学術論文

  1. Tan P-Y, Kato Y., Konishi M.*: A novel strain of the cyanobacterial growth-promoting bacterium, Rhodococcus sp. AF2108, enhances the growth of Synechococcus elongatus, Micorob. Envion. 39(4): ME24050 https://doi.org/10.1264/jsme2.ME24050
  2. Kato Y., Konishi M*: A mature liquid fertilizer derived from cattle urine promotes Arabidopsis thaliana growth via hormone-like responses. Biosci. Biotech. Biochem. 88, 1007-1018 (2024) https://doi.org/10.1093/bbb/zbae080
  3. Watanabe K., Chiou T-Y, Konishi M.*: Optimization of medium components for protein production by Escherichia coli with a high-throughput pipeline that uses a deep neural network, J. Biosci. Bioeng., 137, 4, 304-312 (2024) https://doi.org/10.1016/j.jbiosc.2024.01.005
  4. Konishi M.*: High cell density cultivation of Corynebacterium glutamicum by deep learning-assisted medium design and the subsequent feeding strategy, J. Biosci. Bioeng., 137, 5, 396-402 (2024) https://doi.org/10.1016/j.jbiosc.2024.01.018
  5. Kobayashi Y., Chiou T-Y, Konishi M: Artificial intelligence-assisted analysis reveals amino acid effects and interactions on Limosilactobacillus fermentum growth, Biosci. Biotech. Biochem., 87, 1068‐1076 (2023) https://doi.org/10.1093/bbb/zbad083 2023年度BBB論文賞
  6. Yoshida K., Watanabe K., Chiou T-Y, Konishi M.*: Escherichia coli protein expression using deep learning and Bayesian optimization. J. Biosci. Bioeng. 135: 127-133 (2023) https://doi.org/10.1016/j.jbiosc.2022.12.004 2024年(第32回)生物工学論文賞
  7. Morimoto K., Chiou T-Y, Konishi M.*: Torulaspora quercuum shows great potential for bioethanol production from macroalgal hydrolysate. Bioresour Technol. Rep. 17: 100952 (2022).
  8. Tachibana S., Chiou T-Y, Konishi M.* :Machine learning modeling of the effects of media formulated with various yeast extracts on heterologous protein production in Escherichia coli, Microbiol Open, 10: e1214 (2021).
  9. Chiou, T-Y*, Nomura S., Konishi M., Liao C-S, Shimotori Y., Murata M., Ohtsu N., Kohari Y., Lee W-J, Tasi T-Y, Nagata Y., Saitoh T.: Conversion and hydrothermal decomposition of major components of mint essential oil by small-scale subcritical water treatment. Molecules, 25(8), 1953  (2020)
  10. Konishi M.*, Bioethanol production estimated from volatile compositions in hydrolysates of lignocellulosic biomass by deep learning. J. Biosci. Bioeng. 129, 723-729 (2020)
  11. Chiou T-Y.*, Konishi M., Nomura S., Shimotori Y., Murata M., Ohtsu N., Kohari Y., Nagata Y., Saitoh T.: Recovery of mint essential oil through pressure-releasing distillation during subcritical water treatment. Food Sci. Technol. Res. 25: 793-799 (2019)
  12. Nomura S., Lee W-J, Watanabe D., Konishi M., Saitoh T. Murata M., Kohari Y., Simotori Y., Nagata Y. Chiou T-Y* : Characteristics of Japanese mint extracts obtained by subcritical-water treatment. Food Sci. Technol. Res. 25(5): 695-703 (2019)
  13. Tachibana S., Watanabe K., Konishi M.*: Estimating effects of yeast extract compositions on Escherichia coli growth by a metabolomics approach.J. Biosci. Bioeng. 128: 468-474(2019)
  14. Watanabe K, Tachibana S, Konishi M.*: Modeling growth and fermentation inhibition during bioethanol production using component profiles obtained by performing comprehensive targeted and non-targeted analyses, Bioresour. Technol. 281: 260-268 (2019).
  15. Minami H.*, Hachikubo A., Yamashita S., Sakagami H., Lasashima R., Konishi M., Shoji H., Takahashi N., Pogodaeva T., Krylov A., Khabuev A., Kazakov A., De Batist M., Naudts L., Chensky A., Gubin N., Khalystov O. : Hydrogen and oxygen isotopic anomalies in pore waters suggesting clay mineral dehydration at gas hydrate-bearing Kedr mud volcano, southern Lake Baikal, Russia, Geo-Marine Letters, 38: 403-415 (2018).
  16. Shibuya Y., Yamashita S.*, Hachikubo A., Konishi M., Sakagami H., Minami N., Nishina K., Uchida Y., (2018) Grabity type cone penetration test on sebed off eastern Hokkaido, the Sea of Okhotsk. Dobokukougaku Ronbun-shu B3 Kaiyo Kaihatsu 74: 868-873.(In Japanese)
  17. Konishi M., Morita T., Fukuoka T, Imura T, Uemura S, Iwabuchi H, Kitamoto D*: Efficient production of acid-form sophorolipids from waste glycerol and fatty acid methyl esters by Candida floricola. J. Oleo Sci. 67:489-496. (2018)
  18. Konishi M.*, Makino M.: Selective production of deacetylated mannosylerythritol lipid, MEL-D, by acetyltransferase disruption mutant of Psudozyma hubeiensis. J. Biosci. Bioeng. 125: 105-110 (2018)
  19. Konishi M, Morita T, Fukuoka T, Imura T, Uemura S, Iwabuchi H, Kitamoto D*: Selective production of acid-form sophorolipids from glycerol by Candida floricola. J Oleo Sci 66: 1365-1373 (2017)
  20. Konishi M*, Arakawa T., Kato Y., Ishida M., Horiuchi J: Draft genome sequencing of ascomycetes yeast Pichia membranifaciens KS47-1, which shows high acetate resistance in lignocellulosic feedstock hydrolysate. Genome Announc.5(8): e01672-16 (2017)
  21. Nagano Y.*, Konishi M., Nagahama T., Kubota T., Abe F., Hatada Y., Retrieval of depply buried culturable fungi in marine subsurface sediments, Suruga-Bay, Japan. Fungal Ecol. 20: 256-259 (2016)
  22. Konishi M.*, Fujita M., Ishibane Y., Shimizu Y., Tsukiyama Y., Ishida M.: Isolation of yeast candidates for efficient sophorolipids production: their production potentials associate to their lineage, Biosci. Biotech. Bioeng. 80:2058-2064 (2016)
  23. Koyama S.*, Tsubouchi T., Usui K., Uematsu K., Tame A., Nogi Y., Ohta Y., Hatada Y., Kato C., Miwa T., Toyofuku T. Nagahama T. Konishi M., Nagano Y., Abe F., Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells, FEMS Yeast Res. 15 (6): pii:fov064 (2015)
  24. Konishi M.*, Yoshida Y., Ikarashi M., Horiuchi J.: Efficient and simple electro-transformation of intact cells for the basidiomycetous fungus Pseudozyma hubeiensis. Biotechnol. Lett. 37(8): 1679-1685 (2015)
  25. Konishi M.*, Yoshida Y., Horiuchi J.: Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. J. Biosci. Bioeng. 119, 317-322 (2015)
  26. Yoshikawa J., Morita T., Fukuoka T., Konishi M., Imura T., Kakugawa K., Kitamoto D.*: Selective production of two diastereomers of disaccharide sugar alcohol, mannosylerythritol by Pseudozyma yeast, Appl. Microbiol. Biotechnol. 98(2):823-830 (2014)
  27. Konishi M.*, Nishi S., Fukuoka T., Kitamoto D., Watsuji T., Nagano Y., Yabuki A., Nakagawa S., Hatada Y. Horiuchi J.: Deep-sea Rhodococcus sp. BS-15 lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. Mar Biotech. 16: 484-493 (2014)
  28. Konishi M, Maruoka N., Furuta Y., Fukuoka T. Imura T. Morita T. Kitamoto D.* Biosurfactant-producing yeasts widely inhabit various vegetables and fruits, Biosci. Biotech. Bioeng. 78(3): 516-523 (2014)
  29. Nakamura Y., Konishi M., Ohishi K., Kusaka C., Tame A., Hatada Y., Fujikura K., Nakazawa M., Fujishima M., Yoshida T.*, Maruyama T.: Mucus glycoproteins selectively secreted from bacteriocytes in gill filaments of the deep-sea clam Calyptogena okutanii, Open J Mar Sci 3(4):167-174 (2013)
  30. Konishi M.*, Hatada Y., Horiuchi J.: Draft genome sequence of basidiomycetes yeast-like fungus, Pseudozyma hubeiensis SY62, which produces an abundant amount of biosurfactant, mannosylerythritol lipids. Genome Annouc. 1(4) e00409-13 (2013)
  31. Konishi M.*, Watsuji T., Nakagawa S., Hatada Y., Takai K., Toyofuku, T: Effects of hydrogen sulfide on the bacterial communities on the surface of galatheid crab, Shinkaia crosnieri, and in a bacterial mat, cultured in rearing tanks., Microbes Environ 28: 25-32 (2013)
  32. Shimada T., Funahashi H., Konishi M., Tada K., Kanno T., Horiuchi J.*, Modeling of Churning Machine Control by Experienced Operators in Industrial Butter Production using an Artificial Neural Network, J. Chem. Eng. Jpn. 46(8), 541-545 (2013)
  33. Koyama S.*, Konishi M., Ohta Y., Miwa T., Hatada Y., Toyofuku T., Maruyama T., Nogi Y., Kato C., Tsubouchi T.: Attachment and detachment of living microorganisms using a potential-controlled electrode. Mar. Biotechnol. 15(4): 461-475 (2013)
  34. Konishi M.*, Nishi S., Takami H., Shimane Y., Nagano Y., Mori K., Ohta Y., Hatada Y.: Unique substrate specificity of a thermostable glycosyl hydrolase from uncultured Anaerolinea, derived from bacterial mat on a subsurface geothermal water stream, Biotechnol. Lett. 34(10):1887-1893(2012).
  35. Ohta Y. Nishi T., Haga T., Tsubouchi T. Hasegawa M., Konishi M., Nagano Y., Tsuruwaka Y., Shimane Y, Mori K., Usui E., Tsutui K., Nishimoto A. Fujiwara Y., Maruyama T., Hatada Y.: Screening and Phylogenetic Analysis of Deep-Sea Bacteria Capable of Metabolizing Lignin-Derived Aromatic Compounds, Open J. Mar. Sci. (2012) 2: 1177-1187
  36. Hiraki T., Sekiguchi T., Kato C., Hatada Y., Maruyama T., Abe F., Konishi M.*, New type of pressurized cultivation method providing oxygen for piezotolerant yeast. J. Biosci. Bioeng. 113(2): 220-223(2012).
  37. Kitamoto H. K.*, Shinozaki, Y., Cao X-H, Morita T., Konishi M., Tago K., Kajiwara H., Koitabashi M., Yoshida S., Watanabe M., Sameshima-Yamashita Y., Nakajima-Kambe T., and Tsushima S., Phyllosphere yeasts rapidly break down biodegradable plastics, AMB Express. 1: 44 (2011)
  38. Konishi M*, Nagahama T., Fukuoka T., Morita T., Imura T., Kitamoto D., Hatada Y.: Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62, J. Biosci. Bioeng. 111(6), 702-705 (2011)
  39. Konishi M.*,Fukuoka T., Shimane Y., Mori K., Nagano Y., Ohta Y., Kitamoto D., and Hatada Y.: Biochemical synthesis of novel, self-assembling glycolipid from ricinoleic acid by α-glucosidase of Geobacillus sp. Biotechnol. Lett., 33, 139-145 (2011)
  40. Konishi M.*, Fukuoka T., Nagahama T., Morita T., Imura T., Kitamoto D., and Hatada Y.: Biosurfactant-producing yeast isolated from Calyptogena soyoae (Deep-Sea Cold-Seep Clam) in the deep sea, J. Biosci. Bioeng. 110(2), 169-175 (2010)
  41. Morita T., Takashima M., Fukuoka T., Konishi M., Imura T., Kitamoto D.*: Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, diastereomer type of mannosylerythritol lipid-B, Appl. Microbiol. Biotechnol. 88(3): 679-688 (2010).
  42. Imura T, Masuda Y, Minamikawa H, Fukuoka T, Konishi M, Morita T, Sakai H, Abe M, Kitamoto D: Enzymatic conversion of diacetylated sophoroselipid into acetylated glucoselipid: surface-active properties of novel bolaform biosurfactants. J Oleo Sci. 59(9):495-501 (2010).
  43. Morita T., Fukuoka T., Konishi M., Imura T., Yamamoto S., Kitagawa M., Sogabe A., Kitamoto D.*: Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Appl. Microbiol. Biotechnol., 83(6), 1017-1025 (2009).
  44. Morita T., Konishi M., Fukuoka T., Imura T., Sakai H., and Kitamoto D.*: Efficient Production of Di- and Tri-acylated Mannosylerythritol Lipids as Glycolipid Biosurfactants by Pseudozyma parantarctica JCM 11752T, J. Oleo Sci., 57(10), 557-565 (2008).
  45. Morita T., Konishi M., Fukuoka T., Imura T., and Kitamoto D.*: Identification of Ustilago cynodontis as a New Producer of Glycolipid Biosurfactants, Mannosylerythritol Lipids, Based on Ribosomal DNA Sequences, J. Oleo Sci. 57(10), 549-556 (2008).
  46. Morita T., Konishi M., Fukuoka T., Imura T., and Kitamoto D.*: Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. J. Biosci. Bioeng. 105 (5): 493-502 (2008).
  47. Konishi M., Fukuoka T., Morita T., Imura T., and Kitamoto D.*: Production of new types of sophorolipids by Candida batistae. J. Oleo Sci. 57(6): 116-153 (2008)
  48. Konishi M., Morita T., Fukuoka T., Imura T., Kakugawa K., and Kitamoto D.*: Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59, Appl. Microbiol. Biotechnol. 78(1): 37-46 (2008)
  49. Fukuoka T., Morita T., Konishi M., Imura T., and Kitamoto D.*: A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohyd. Res. 343(3): 555-560 (2008)
  50. Morita T., Konishi M., Fukuoka T., Imura T., Yamamoto S., Kitagawa Y., Soga A., and Kitamoto D.*: Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J. Oleo Sci. 57(2): 123-131 (2008)
  51. Fukuoka T., Morita T., Konishi M., Imura T., Sakai H., and Kitamoto D.*: Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Appl. Microbiol. Biotechnol. 76(4): 801-810 (2007)
  52. Fukuoka T., Morita T., Konishi M., Imura T., and Kitamoto D.*: Characterization of new types of mannosylerythritol lipids as biosurfactants produced from soybean oil by a basidiomycetous yeast, Pseudozyma shanxiensis. J. Oleo Sci. 56(8): 435-442 (2007)
  53. Morita T., Konishi M., Fukuoka T., Imura T., and Kitamoto D.*: Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycetous yeast, Pseudozyma antarctica JCM 10317. J. Biosci. Bioeng. 104(1): 78-81 (2007)
  54. Fukuoka T, Morita T, Konishi M., Imura T., and Kitamoto D.*: Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced Pseudozyma yeasts. Biotechnol. Lett. 29(7): 1111-1118 (2007)
  55. Konishi M., Morita T., Fukuoka T., Imura T., Kakugawa K., and Kitamoto D.*: Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl. Microbiol. Biotechnol. 75(3): 521-531(2007)
  56. Imura T.*, Hikosaka Y., Worakitkanchanakul W., Sakai H., Abe M., Konishi M., Minamikawa H., and Kitamoto D.: Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases, Langmuir 23(4): 1659-1663 (2007)
  57. Yamashita S., Sameshima Y., Konishi M., Kato J., Kishimoto M., Honda K., Omasa T., and Ohtake H.*: Integrated biooxidation and acid dehydration process for monohydroxylation of aromatics. Proc. Biochem. 42(1): 46-51 (2007)
  58. Morita T., Konishi M., Fukuoka T., Imura T., and Kitamoto D.*: Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Appl.Microbiol.Biotechnol. 74(2): 307-315 (2007)
  59. Morita T., Konishi M., Fukuoka T., Imura T., Kitamoto H., and Kitamoto D.*: Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids. FEMS Yeast Res.7(2): 286-292 (2007)
  60. Morita T., Konishi M., Fukuoka T., Imura T., and Kitamoto D.*: Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast, Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids. Yeast 23:661-71 (2006)
  61. Morita T., Konishi M., Fukuoka T., Imura T., and Kitamoto D.*: Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence, Appl. Microbiol. Biotechnol. 73(2): 305-313 (2006)
  62. Izawa N., Kishimoto M.*, Konishi M., Omasa T., Shioya S., and Ohtake H.: Recognition of culture state using two-dimensional gel electrophoresis with an artificial neural network, Proteomics, 6(13): 3730–3738 (2006)
  63. Konishi M., Kishimoto M.*, Omasa T., Shioya S., and Ohtake H.: Effect of Sulfur Sources on Specific Desulfurization Activity of Rhodococcus erythropolis KA2-5-1 in Exponential Fed-Batch Culture, J. Biosci. Bioeng. 99:259-263 (2005)
  64. Konishi M., Kishimoto M.*, Tamesui N., Omasa T., Shioya S., and Ohtake H.: The separation of oil from an oil-water-bacteria mixture using a hydrophobic tubular membrane, Biochem. Eng. J., 24: 49-54 (2005)

参考論文

  1. 小西正朗「化学工学年鑑2024 8.バイオテクノロジー 8.5 環境生物」化学工学, 88, 475-476 (2024)
  2. 小西正朗・タンペイユー・加藤勇太「シアノバクテリア増殖促進細菌の直接探索」アグリバイオ, 8, 56-59 (2024)
  3. 小西正朗「研究最前線:北見工業大学での10年間」極限環境生物学会誌, 21(2), 4-6 (2023)
  4. 小西正朗「光合成微生物の増殖を促進する微生物とその可能性」化学工学会バイオ部会NewsLetter, 58, pp. 24 (2023)
  5. 小西正朗 「微生物培地の解析と設計—Analyses and Design for Microbial Media—特集 培養のものつくり」食品・食品添加物研究誌: FFIジャーナル , 228 (2), 118-123 (2023)
  6. 小西正朗 「続・生物工学基礎講座バイオよもやま話 培地最適化DX~統計学とAIと~」生物工学会誌, 101 (3), 130-134 (2023)
  7. 小西正朗「北極海の生物資源収集と海洋フィールドワークによる技術者教育」月刊「技術士」7, 40-43 (2022)
  8. 小西正朗「成分分析と機械学習を用いた微生物培地解析に関する研究」生物工学会誌 100(3): 125-130 (2022)
  9. 小西正朗「培地成分プロファイリングと機械学習による培養予測技術 (特集 人工知能を活用したバイオ産業分野の新潮流)」化学工学会誌 84(2): 64-67 (2020)
  10. 小西正朗「Agrobacterium法による形質転換の幅広い宿主への適用(バイオミディア)」生物工学会誌,98(10) 2020
  11. 小西正朗「発酵生産における機械学習の活用: 培地成分に着目して」酵素工学ニュース 84号
  12. 小西正朗「天然培地成分の網羅的分析による微生物培養予測」バイオサイエンスとインダストリー 76(6): 453-455 (2019)
  13. 小西正朗「極限環境生物学会研究奨励賞受賞研究 工学的アプローチによる深海生物-共生菌研究手法の開拓」極限環境生物学会誌 14(1) 9-13 (2015)
  14. 小西正朗「続・生物工学基礎講座 バイオよもやま話 細胞の増殖を捉える―計測法から比速度算出まで―」生物工学会誌 93(3):149-152 (2015)
  15. 小西正朗, “深海由来酵母が生産する糖脂質の分子デザイン”, 環境バイオテクノロジー学会誌, 14: 9-14 (2014)
  16. 小西正朗, “Non-conventional yeastの特異的二次代謝反応のデザイナブル化”, 化学工学会バイオ部会News letter, 35: 7-9 (2014)
  17. 小西正朗, “知識・応用力・倫理を備えたエンジニア”, 生物工学, 91(3): 168 (2013)
  18. 小西正朗, “「木を食べる」貝とその共生菌:バイオ燃料研究との関連” 生物工学, 90(8): 509 (2012)
  19. 小西正朗, 深海酵母の利用―バイオサーファクタントの生産―, 高圧力の科学と技術第10巻4号347-353(2010)
  20. Kitamoto D.*, Morita T., Fukuoka T., Konishi M., Imura T.: Self-assembling properties of glycolipid biosurfactants and their potential application. Curr. Opin. Colloid Interface Sci. 14, 315-328 (2009)
  21. 北本大*, 森田友岳, 福岡徳馬, 小西正朗, 井村知弘 ”バイオサーファクタントの生産とその機能利用, 生物工学会誌 第86巻第10号, 476-478 (2008)
  22. 小西正朗, 伊澤直樹, 岸本通雅*, バイオプロセスにおけるプロテオーム解析手法の応用, ソフトウエアバイオロジー第2巻, 43-47 (2003)

著書

  1. 小西正朗(部分執筆), 微生物を用いた有用物質生産技術の開発~バイオマス由来化学品・エネルギーの事業採算性向上と環境負荷低減の方策~, 第2章 有用物質生産のための発酵プロセスの設計, 3節 発酵プロセスにおける微生物培養操作・管理のポイント,技術情報協会 (2024) 2024年6月28日発刊,ISBN:978-4-86798-023-1, https://www.gijutu.co.jp/doc/b_2251.htm
  2. 小西正朗(部分執筆), 極限環境微生物の先端科学と社会実装最前線, 株式会社エヌ・ティー・エス (2023), 2023年12月発売, ISBN 978-4-86043-848-7, https://cmcre.com/archives/119562/
  3. 小西正朗(部分執筆), 未培養微生物研究の最新動向,シーエムシー出版,(2023), 発行日:2023年4月27日 ISBNコード:978-4-7813-1732-8 https://www.cmcbooks.co.jp/products/detail.php?product_id=9074
  4. 小西正朗 (部分執筆), 第4章 微生物を利用した有用物質の生産と発酵プロセスの設計 第1節 微生物培養の各種手法とその培養操作・最適化のポイント,in 「バイオプロセスを用いた有用物質の生産技術」173-180 (2022), 株式会社エヌ・ティー・エス, 発刊日 2022年11月30日, ISBN 978-4-86104-904-0
  5. 片倉啓雄, 松村吉信, 長沼孝文, 小野比佐好, 前川裕美, 小西正朗, 大政健史,石川陽一, 仁宮一章, 滝口 昇, 遠藤力也, 髙島昌子, 黒澤 尋, 佐久間英雄, 東端啓貴, 村山敬一, 伊澤直樹, 清水(肖)金忠, 武藤正達, 米澤寿美子, 木下昌惠, 東山堅一, 天野 研, 友安俊文 “実践 有用微生物培養のイロハ 試験管スケールから工業スケールまで” 株式会社エヌ・ティー・エス(2014)

特許

  1. 特願2023-016849「合成培地の製造方法、大腸菌の培養方法、及びタンパク質、核酸、又は代謝物の合成方法」小西正朗、中島拓都、渡辺一樹(令和5年2月7日出願)
  2. 特願2023-000957「微細藻類増殖促進用微生物、微細藻類増殖促進剤、微細藻類の培養方法、スクリーニング方法」小西正朗、加藤勇太、タン ペイ ユ、窪之内誠 (令和5年1月6日出願)
  3. 特許第7079454号(特願2021-119491)「粒度推定装置、及び、粒度推定装置の学習方法」平野麻衣子、佐藤風花、田口寛秋、小西正朗 (令和4年4月26日特許査定)
  4. 特許第7148099号(特願 2021-118370) 「植物生長促進剤、微細藻類成長促進剤、フルボ酸含有液及びフルボ酸含有液の製造方法」加藤勇太、窪之内誠、小西正朗 (令和3年7月19日出願,特許査定:令和4年9月27日)
  5. 特願2020-076809, 「微細藻類成長促進剤及び微細藻類成長促進剤の製造方法」, 小西正朗、窪之内誠、加藤勇太(2020年4月23日出願)
  6. 特願2019-038319, 「植物生長促進剤及び植物生長促進剤の製造方法」小西正朗、本間雄二朗、窪之内誠、加藤勇太(2019.03.04出願)
  7. 特許第6887149号 「発酵阻害物質への耐性を有する新規ピキア属酵母」小西正朗, 荒川知子, 加藤勇太, 石田奨 (2015.6.10出願)
  8. 特許第5999848号「水生生物の飼育システムとその飼育方法」小西正朗, 和辻智郎 (PCT/JP2012/075641) WO2013/051605
  9. 特許 2011-010693(2011/01/21)「生きた微生物の固定化方法および調製方法」小山純弘, 丸山正、加藤千秋, 秦田勇二, 大田ゆかり, 坪内泰志, 小西正朗, 能木裕一(2011.1.21) U.S. Patent US13/359797 (2011.1.27)
  10. 特開2009-207493, 「植物の発酵産物を培地に用いるバイオサーファクタントの生産方法」, 大森俊郎, 竹嶋直樹, 丸岡生行, 林圭, 小西正朗, 福岡徳馬, 森田友岳, 井村知弘, 北本大
  11. 特開2008-247845「酸型ソホロースリピッドの生産方法」, 小西正朗, 福岡徳馬, 森田友岳, 井村知弘, 北本大, 岩渕裕行, 田村隆光 (2007.3.30)
  12. 特許第4978908号「マンノシルエリスリトールリピッドの製造方法」, 森田友岳, 小西正朗, 福岡徳馬, 井村知弘, 北本大, 角川幸治, 北川優, 曽我部敦(2006.12.7)
  13. 特開2004-217725, バイオ脱硫リアクター, 岸本通雅, 小西正朗, 佐野敏郎, 丸橋健司(2003.1.10)